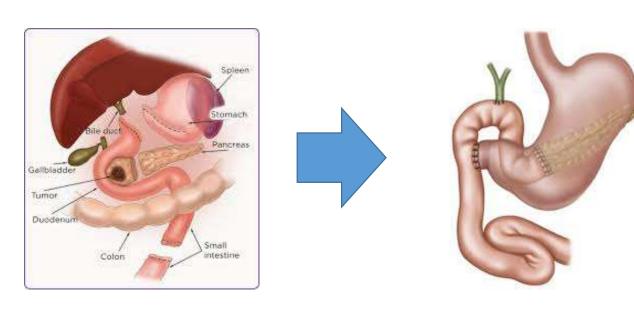
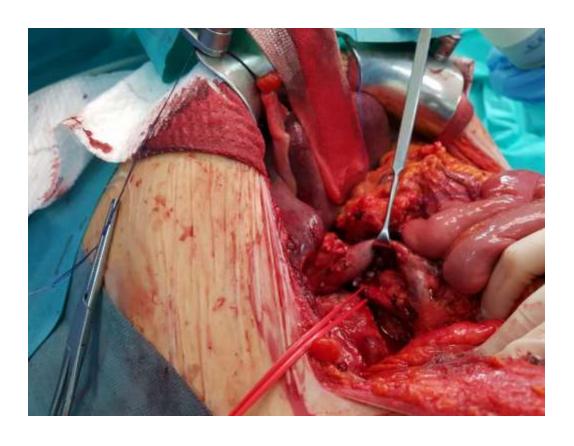


Robotic surgery in Pan-NETs

Emilio Bertani

European Institute of Oncology
Milano
emilio.bertani@ieo.it

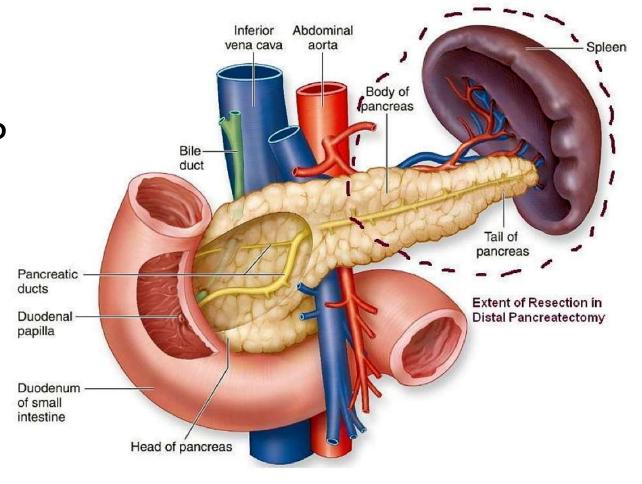

Why Robot for Surgery of PanNETs?


- Surgical resection is the only curative treatment of pancreatic neuroendocrine tumors (PanNETs)
- Minimally invasive procedures are a safe modality for the surgical treatment of PanNETs
- Laparoscopy does not compromise oncologic resection, and is associated with decreased postoperative pain, better cosmetic results, a shorter hospital stay, and a shorter postoperative recovery period
- Pancreatic Surgery is risky and technically demanding
- Pancreatic postoperative fistula (POPF) is the main problem
- Post-op pancreatic insufficiency is 8-20% (endocrine) and 20-50% (exocrine)

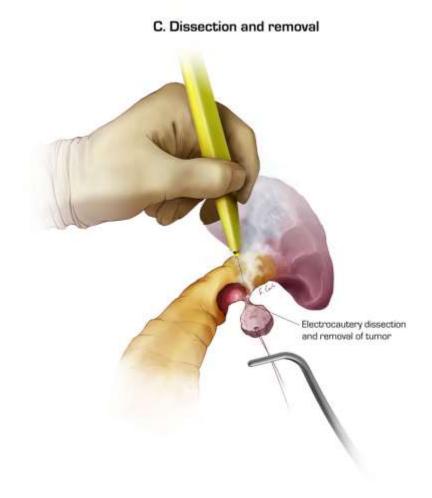
Why Robot for Surgery of PanNETs?

- Surgical resection is the only curative treatment of pancreatic neuroendocrine tumors (PanNETs)
- Minimally invasive procedures are a safe modality for the surgical treatment of PanNETs
- Laparoscopy does not compromise oncologic resection, and is associated with decreased postoperative pain, better cosmetic results, a shorter hospital stay, and a shorter postoperative recovery period
- Pancreatic Surgery is risky and technically demanding
- Pancreatic postoperative fistula (POPF) is the main problem
- Post-op pancreatic insufficiency is 8-20% (endocrine) and 20-50% (exocrine)

Standard pancreatic resection (SR)



Pancreaticoduodenectomy (PD)


Standard pancreatic resection

Distal pancreatectomy with or without splenectomy (DP

Atypical resections

Enucleation (EN)

Meta-analysis of surgical outcome after enucleation *versus* standard resection for pancreatic neoplasms

F. J. Hüttner^{1,2}, J. Koessler-Ebs^{1,2}, T. Hackert¹, A. Ulrich¹, M. W. Büchler¹ and M. K. Diener^{1,2}

¹Department of General, Visceral and Transplantation Surgery, and ²Study Centre of the German Surgical Society, University of Heidelberg, Heidelberg, Germany

Correspondence to: Professor M. W. Buchler, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany (e-mail: markus.buechler@med.uni-heidelberg.de)

Standard resection

 Higher incidence of POPF (all centers)

Enucleation

EN vs SR

- Duration of surgery
- Blood loss
- Lenght of stay
- Less endocrine insufficiency
- Less exocrine insufficiency

No difference in overall morbidity and mortality No differences in POPF (high volume centers)

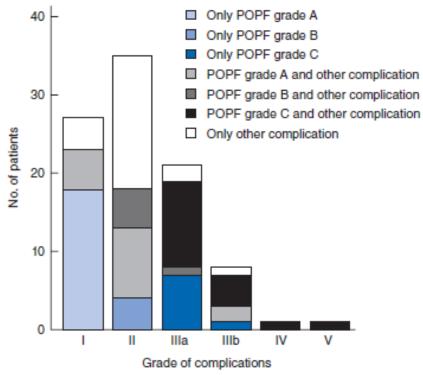
BJS 2015

Risk of pancreatic fistula after enucleation of pancreatic tumours

O. Strobel¹, A. Cherrez¹, U. Hinz¹, P. Mayer², J. Kaiser¹, S. Fritz¹, L. Schneider¹, M. Klauss², M. W. Büchler¹ and T. Hackert¹

Departments of ¹Surgery and ²Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany

*Correspondence to: Dr O. Strobel, Department of Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany


(e-mail: oliver.strobel@med.uni-heidelberg.de)

Univariate:

- Cystic tumors
- History of pancreatitis
- Cardiac comorbidity

Multivariate:

Cystic tumors

a Contribution of POPF to overall morbidity

Original article

Propensity score-matched analysis of robotic *versus* open surgical enucleation for small pancreatic neuroendocrine tumours

F. Tian, X.-F. Hong, W.-M. Wu, X.-L. Han, M.-Y. Wang, L. Cong, M.-H. Dai, Q. Liao, T.-P. Zhang and Y.-P. Zhao

Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Wangfujing Avenue, Dongcheng District, Beijing 100730, China Correspondence to: Dr Y.-P. Zhao (e-mail: zhao8028@263.net)

Rob vs Open EN

Robotic enucleation

Less blood loss
Short lenght of stay

Clinical Research Paper

Minimally invasive distal pancreatectomy for PNETs: laparoscopic or robotic approach?

Jiaqiang Zhang^{1,2,*}, Jiabin Jin^{1,*}, Shi Chen^{1,2,*}, Jiangning Gu^{1,2}, Yi Zhu¹, Kai Qin¹, Qian Zhan^{1,2}, Dongfeng Cheng¹, Hao Chen^{1,2}, Xiaxing Deng^{1,2}, Baiyong Shen^{1,2} and Chenghong Peng^{1,2}

Robotic distal pancreatectomy

Less blood loss

Higher spleen preservation rate

Higher n° of LN harvested in G2, G3 tumors*

Rob vs LPS DP

Short-term and long-term outcomes after robot-assisted versus laparoscopic distal pancreatectomy for pancreatic neuroendocrine tumors (pNETs): a multicenter comparative study

Oncotarget 2017
Langenbecks Arch Surg 2019

Sergio Alfieri¹ · Giovanni Butturini² · Ugo Boggi³ · Andrea Pietrabissa⁴ · Luca Morelli³ · Fabio Vistoli³ · Isacco Damoli² · Andrea Peri⁴ · Claudio Fiorillo¹ · Luigi Pugliese⁴ · Marco Ramera⁵ · Nelide De Lio³ · Gregorio Di Franco³ · Alessandro Esposito⁵ · Luca Landoni⁵ · Fausto Rosa¹ · Roberta Menghi¹ · Giovanni Battista Doglietto¹ · Giuseppe Quero^{1,6} · The Italian Robotic pNET Group

Department of Pancreatic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China

² Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China

These authors have contributed equally to this work

ORIGINAL ARTICLE - ENDOCRINE TUMORS

Defining the Role of Lymphadenectomy for Pancreatic Neuroendocrine Tumors: An Eight-Institution Study of 695 Patients from the US Neuroendocrine Tumor Study Group

Alexandra G. Lopez-Aguiar, MD, MS¹, Mohammad Y. Zaidi, MD, MS¹, Eliza W. Beal, MD², Mary Dillhoff, MD², John G. D. Cannon, MD³, George A. Poultsides, MD³, Zaheer S. Kanji, MD⁴, Flavio G. Rocha, MD⁴, Paula Marincola Smith, MD⁵, Kamran Idrees, MD⁵, Megan Beems, MD⁶, Clifford S. Cho, MD⁶, Alexander V. Fisher, MD⁷, Sharon M. Weber, MD⁷, Bradley A. Krasnick, MD⁸, Ryan C. Fields, MD⁸, Kenneth Cardona, MD¹, and Shishir K. Maithel, MD¹

	Univariable		Multivariable	
Tumor size, cm				
< 2	Ref	-	Ref	-
≥ 2	6.6 (4.1–10.7)	< 0.001	4.9 (2.7-8.8)	< 0.001
Tumor location in the pancreas				
Distal	Ref		Ref	-
Proximal	2.5 (1.7–3.6)	< 0.001	1.9 (1.2–3.2)	0.008
Well	Ref	-	Ref	-
Moderate	2.1 (1.2–3.7)	0.006	0.9 (0.5-1.9)	0.883
Ki-67 index				
< 3%	Ref	_	Ref	-
3-20%	3.1 (2.0-4.9)	< 0.001	2.2 (1.3-3.7)	0.004

Ann Surg Oncol 2019

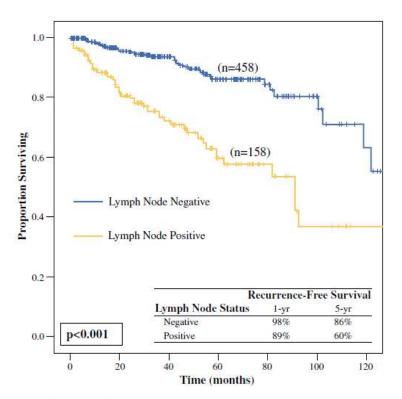
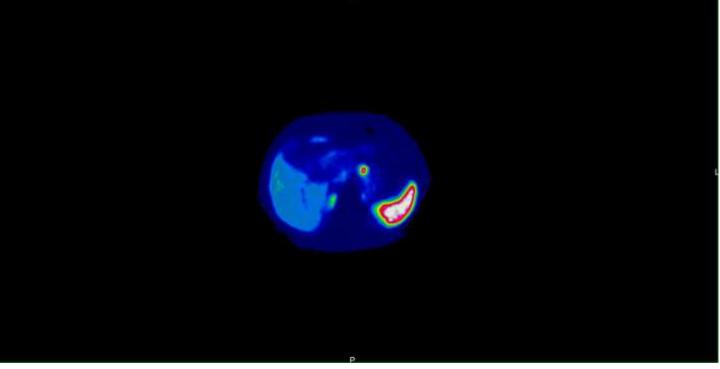


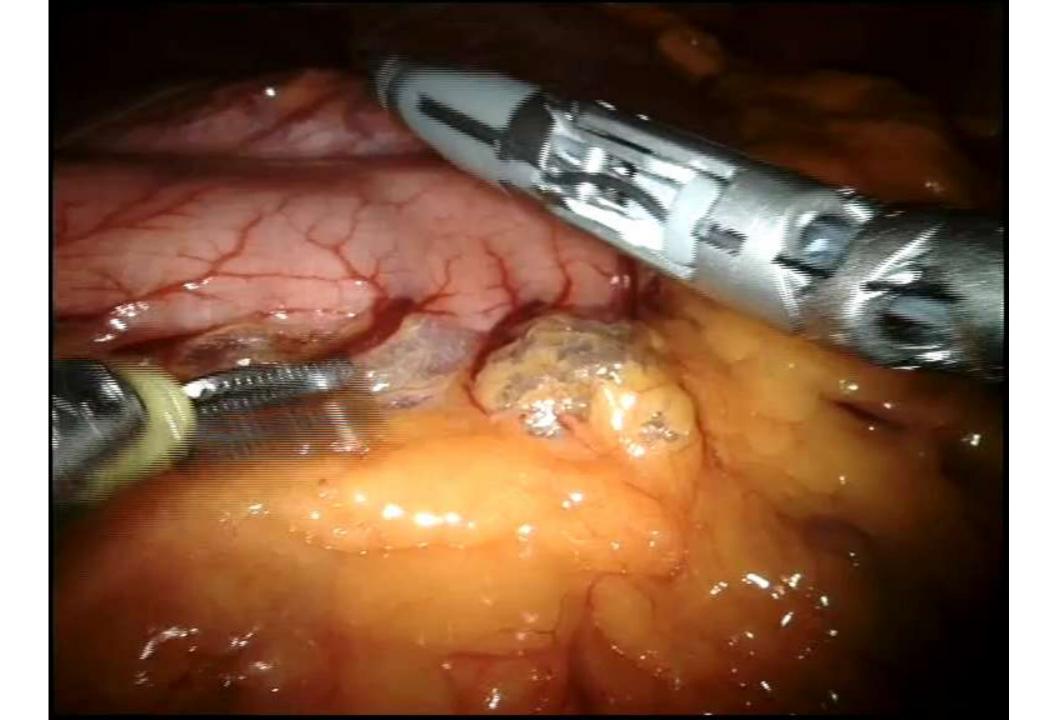
FIG. 1 Kaplan-Meier survival curve for recurrence-free survival in lymph node-positive versus lymph node-negative patients with low/intermediate grade non-functional pancreatic neuroendocrine tumors

The «2» rule:

2 cm G2

>2 Ki-67


Lymphadenectomy


- Male, 50 yrs
- Hypertension
- Uretheral stone → Uro CT
- → Pancreatic neoplasms of the body
- →EUS with elastography → vascularized neoplasm with increased consistency
- →Cytology →well differentiated NET (Ki-67 1%)

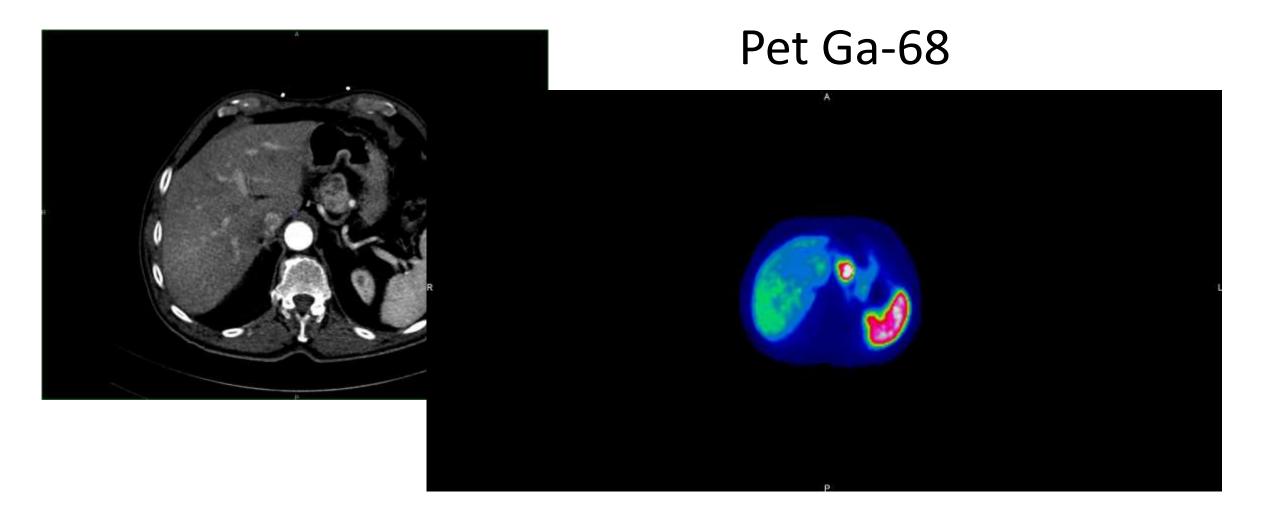
CT scan

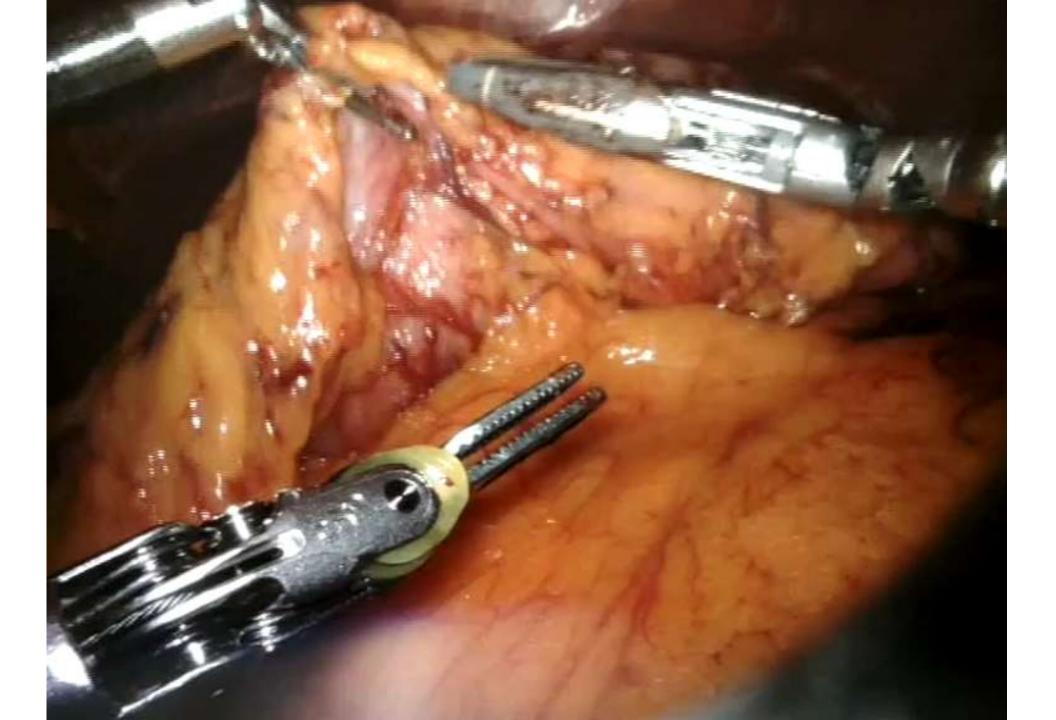
Pet Ga-68

Well differentiated NET G2 (WHO2017) → Ki-67 10% (hot-spot) Mitotic index: <1 mitosis/HPF, no necrosis, vascular or perineural invasion

Cromogranin and synaptophisin +

pT1; pN0; G2


• Male, 71 yrs

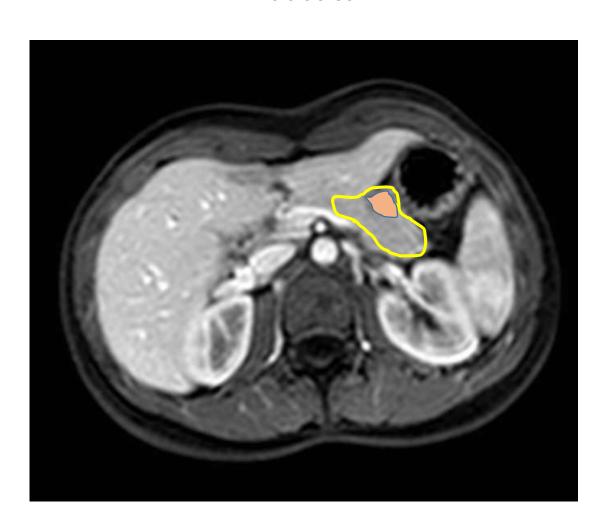

Previous cardiac ischaemic stroke, NIDDM

 Chest pain → thorco-abdominal CT → dilatation of the ascending aorta and pancreatic cystic neoplasm 34 x 27 of diameter

EUS → PanNet Ki-67 < 1% Synaptophisin + CgA -

CT scan

Well differentiated NET G2 (WHO 2017); Ki-67: 10%; mitotic index <1/10 HPF; no necrosis, vascular invasion or perineural invasion; synaptophisin + CgA + focally


pT2, pN0, G2

Female, 31 years

No medical history

Aspecific abdominal pain \rightarrow abd US \rightarrow neoplasm of the pancreatic body \rightarrow MRI \rightarrow Pet Ga-68 negative \rightarrow FDG Pet Positive \rightarrow suspicion of pseudopapillary pancreatic tumor of the pancreas

MRI

Pseudopapillary tumor of the pancreas (Ki-67) of 4% 2 negative LN

Thank you

emilio.bertani@ieo.it