
diagnostics

Article

A Machine Learning Decision Support System (DSS) for
Neuroendocrine Tumor Patients Treated with Somatostatin
Analog (SSA) Therapy

Jasminka Hasic Telalovic 1,† , Serena Pillozzi 2,† , Rachele Fabbri 3 , Alice Laffi 4 , Daniele Lavacchi 2,
Virginia Rossi 2 , Lorenzo Dreoni 2 , Francesca Spada 4 , Nicola Fazio 4 , Amedeo Amedei 5,* ,
Ernesto Iadanza 3,‡ and Lorenzo Antonuzzo 2,‡

����������
�������

Citation: Hasic Telalovic, J.; Pillozzi,

S.; Fabbri, R.; Laffi, A.; Lavacchi, D.;

Rossi, V.; Dreoni, L.; Spada, F.; Fazio,

N.; Amedei, A.; et al. A Machine

Learning Decision Support System

(DSS) for Neuroendocrine Tumor

Patients Treated with Somatostatin

Analog (SSA) Therapy. Diagnostics

2021, 11, 804. https://doi.org/

10.3390/diagnostics11050804

Received: 16 March 2021

Accepted: 26 April 2021

Published: 28 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science Department, University Sarajevo School of Science and Technology,
71210 Sarajevo, Bosnia and Herzegovina; jasminka.hasic@ssst.edu.ba

2 Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 4, 50134 Florence, Italy;
serena.pillozzi@unifi.it (S.P.); daniele.lavacchi@yahoo.it (D.L.); virginiarossi89@gmail.com (V.R.);
lorenzodreoni@gmail.com (L.D.); lorenzo.antonuzzo@unifi.it (L.A.)

3 Department of Information Engineering, University of Florence, Via S. Marta 3, 50139 Florence, Italy;
rachele.fabbri@stud.unifi.it (R.F.); ernesto.iadanza@unifi.it (E.I.)

4 Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology,
IEO, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; alice.laffi@ieo.it (A.L.); francesca.spada@ieo.it (F.S.);
nicola.fazio@ieo.it (N.F.)

5 Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3,
50134 Florence, Italy

* Correspondence: amedeo.amedei@unifi.it
† These authors contributed equally to this paper.
‡ These authors contributed equally to this paper.

Abstract: The application of machine learning (ML) techniques could facilitate the identification of
predictive biomarkers of somatostatin analog (SSA) efficacy in patients with neuroendocrine tumors
(NETs). We collected data from 74 patients with a pancreatic or gastrointestinal NET who received
SSA as first-line therapy. We developed three classification models to predict whether the patient
would experience a progressive disease (PD) after 12 or 18 months based on clinic-pathological
factors at the baseline. The dataset included 70 samples and 15 features. We initially developed three
classification models with accuracy ranging from 55% to 70%. We then compared ten different ML
algorithms. In all but one case, the performance of the Multinomial Naïve Bayes algorithm (80%)
was the highest. The support vector machine classifier (SVC) had a higher performance for the recall
metric of the progression-free outcome (97% vs. 94%). Overall, for the first time, we documented
that the factors that mainly influenced progression-free survival (PFS) included age, the number
of metastatic sites and the primary site. In addition, the following factors were also isolated as
important: adverse events G3–G4, sex, Ki67, metastatic site (liver), functioning NET, the primary
site and the stage. In patients with advanced NETs, ML provides a predictive model that could
potentially be used to differentiate prognostic groups and to identify patients for whom SSA therapy
as a single agent may not be sufficient to achieve a long-lasting PFS.

Keywords: neuroendocrine tumors; machine learning; prognostic factors; predictive biomarkers;
somatostatin analogs; random forest classifier

1. Introduction

Neuroendocrine tumors (NETs) arise from neuroendocrine cells distributed through-
out the body. They consist of a wide family of tumors that includes the pancreatic NET
(panNET) and gastrointestinal (GI) NET and also neoplasms from other origin sites [1].
The incidence of NETs in the United States was 6.98 cases per 100,000 people in the year
2004 and it increased from 1975 to 2008. The reasons for this rise are unclear although
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the improvement of diagnosis and classification seem to be two of the major factors [2,3].
Patients with NETs may or may not have symptoms attributable to hormonal hyper-
secretion (“functional” or “non-functional” tumors) [4]. Most NETs are sporadic with
unknown risk factors whereas rare cases are related to inherited syndromes including
multiple endocrine neoplasia (MEN) 1 and 2, von Hippel–Lindau (VHL) disease, tuberous
sclerosis (TSC) complex and neurofibromatosis (NF) 1 [5–7]. In addition to the site of
origin, NETs are generally subclassified by histologic characteristics based on a tumor
differentiation and proliferation index [8]. Several studies have confirmed that an increased
mitotic rate and a high Ki67 index are associated with a more aggressive clinical behavior
with a consequently worse prognosis [9–14]. NETs are staged according to the eighth
edition of the AJCC tumor (T), node (N) and metastasis (M) staging system [15]. The
association of the tumor stage with the prognosis has been confirmed in analyses of the
SEER database and the National Cancer Database [16–20]. Nevertheless, in addition to
information on the histologic classification and stage, other factors are under study to
verify a potential prognostic role such as the margin status (positive or negative) and the
presence of a vascular or perineural invasion [21,22], the serum level of Chromogranin
A [23], the overexpression of the mammalian target of rapamycin (mTOR) [24], mutations
or the loss of expression in the cyclin-dependent kinase inhibitor CDKN1B (p27) [25,26]
and circulating tumor cells (CTCs) [27]. As most NETs overexpress high-affinity receptors
for somatostatin, mainly subtype 2 [28], the use of somatostatin analogs (SSAs, octreotide
LAR and lanreotide depot) can be effective for both syndrome control and tumor growth
control [29]. The evidence for the use of octreotide LAR (30 mg/4 w) is based on the
results of the PROMID study in metastatic midgut NETs, which showed a median time to
tumor progression (TTP) of 14.3 and 6 months in the octreotide LAR and placebo groups,
respectively [30,31]. Subsequently, the CLARINET study randomized 204 patients with
locally advanced or metastatic non-functioning pancreatic or intestinal NETs [32] and
showed that treatment with lanreotide for two years resulted in an improvement in the
PFS over a placebo (32.8 vs. 18 months) [33]. Although these two trials confirmed with a
high level of evidence the antiproliferative effect of SSAs, after decades of a very poor level
of evidence for this, no clear predictive factors came up from the studies to realize which
NETs would benefit most from an SSA [34].

Recent scientific breakthroughs and technical developments have expanded our cancer
understanding and changed approaches to diagnosis and treatment resulting in more
accurate, predictive, preventive and personalized health care tailored to the individual
patient. Consequently, the big data revolution has provided an opportunity to mine such
a large dataset by implementing artificial intelligence (AI) and machine learning (ML)
algorithms. In addition, personalized medicine aims to revolutionize healthcare with its
main purpose of providing the proper patient with the proper medication at the proper
time and dosage and thereby improving the quality of life and, finally but importantly,
helping to reduce the healthcare cost.

AI and ML, which can be briefly defined as technologies enabling computers to make
successful predictions using past experiences, have shown an impressive development
recently with the help of the great increase in the processing power and storage capacity of
computers. ML methods have been widely employed in bioinformatics [35,36] but recently
also in the health area and especially in support of cancer management including diagnosis,
prognosis and treatment.

Several studies, for example, have attempted to use deep learning (DL) to help identify
dysplasia and early esophageal cancer [37] while different AI models have been devel-
oped to evaluate different aspects of gastric cancer such as the diagnosis or prognosis [38].
In addition, DL models have been used in breast cancer to identify potential diagnos-
tic biomarkers [39] and to improve the accuracy in the histologic classification [40] or
diagnosis [41].

Finally, and notably, in a recent study Goehler et al., using data of 64 NET patients, con-
structed a DL algorithm that discovered liver metastases, co-registered the detected lesions
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and then assessed the interval change in the cancer burden between two multiparametric
liver MRI examinations [42].

Starting from these premises, we selected a homogeneous population of gastroen-
teropancreatic (GEP) NETs treated with a first-line SSA with an antiproliferative goal and
focused our study to identify through ML the clinical and/or biological factors predicting
the clinical outcomes.

2. Results
2.1. Cohort of Patients

A total of 74 patients were enrolled; in detail, 30 patients with a pancreatic NET and
44 patients with a gastrointestinal NET. Of these, 57 patients were less than 70 years of age,
17 were 70 or more years of age and the median age was 68 years. The total number of men
was 45 and the total number of women was 29. A total of 97% of the cohort population had
a metastatic disease, only 3% had a locally advanced disease and the tumor had a hormonal
hypersecretion in 30% of the cases. G1 tumors were present in 35% of the patients whereas
62% of the patients had G2 tumors. The grade had not been assessed in two patients (3%).
Considering the mitotic rate, the Ki67 was <2% in 26% of the cases, 2–20% in 69% of the
cases, ≥20% in 2.6% of the cases and not assessed in two cases (2.5%). The primary tumor
was in site in 42% of the patients while 58% underwent surgery and had a local or distant
recurrence of the disease. A total of 62% of the population had a single metastatic site, 35%
had more than one metastatic site while 3% had no distant metastases. Metastases were
localized in the liver in the majority of the cases (85%) followed by the lung in 7% of the
cases and bones in 4% of the cases. Of the cohort, 46% of the patients received a treatment
with a lanreotide injection every 28 days and 54% had an injection of octreotide LAR every
28 days. A severe adverse event (G3–G4) related to the treatment occurred in only one
patient. The PFS was more than 12 months from the beginning of the treatment in 72% of
the patients and more than 18 months in 58% of the cases while it was not evaluated in
four patients (5%) because they had started therapy for less than 12 months. The dataset
characteristics are depicted in Table A1.

2.2. Data Cleaning

Before proceeding with the data analysis, the dataset was examined. As four samples
did not have the information of whether that person progressed either after 12 or 18 months
(or not at all), those samples were removed from the dataset. An additional two samples
had data missing for the grade and Ki67 features but as all of the other features were present
as well as the progression outcomes, we decided to retain those samples and replace the
missing values with the average for those features amongst all of the other samples.

Additionally, we engineered one feature and that was the current age in years. The
date of birth was then not considered as a feature. The “Performance status (ECOG)”
feature had a value of zero for all but one sample and it was removed from the dataset as it
could not contribute to the analysis.

In the end, the analyzed dataset had 70 samples and 15 features. The outcomes of
those 70 patients were: 17 patients progressed after 12 months, an additional 10 progressed
after 18 months and the remaining 43 patients had no disease progression.

2.3. Classification Models

Based on the available outcomes for the patient data, we initially decided to develop
the following classification models:

• Model 1: predicts whether the patient will progress after 12 months;
• Model 2: predicts whether the patient will progress after 18 months;
• Model 3: predicts whether the patient will progress either after 12 or 18 months or not

at all.

The first two models had two possible outcomes while the third one had three out-
comes. For the first two models a random guess would be correct half of the time (50%)
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on average while for the third model a random guess would be correct a third of the time
(around 33%).

2.4. Imbalance Analysis of the Dataset

Table A2 summarizes the sample counts for each of the studied models. As we can see,
the outcomes in our datasets were not very well balanced as there was a large difference in
their counts. Furthermore, Figure 1 presents the counts in the form of a graph: each bar
represents the number of samples available for that class for the three above-mentioned
models. On top of each bar, the percentage of samples per class is given. In ML, these
types of situations can lead to poor performance of the minority outcome prediction. The
description of all of the outcomes for the three studied models can be found in Table 1.

Figure 1. Plots of the count of samples per class. From the left: model 1–PFS 12 months, model
2—PFS 18 months, model 3—PFS.

Table 1. Meaning of outcomes in each model.

Model Outcome 1 Outcome 2 Outcome 3

1 0 (progression within
12 months)

1 (progression free
after 12 months) NA

2 0 (progression within
18 months)

1 (progression free
after 18 months) NA

3 0 (progression within
12 months)

1 (progression
between 12 and

18 months)

2 (progression free
after 18 months)

2.5. Fixing the Data Imbalance

As analyzed in the previous section, the dataset was not balanced for all of the three
models considered: progression at 12 months, progression at 18 months and progression
either at 12 or 18 months.
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The imbalance of the dataset was fixed with SMOTE, an oversampling method for
creating synthetic examples of the minority classes. The results of the oversampling process
on our dataset are shown in Figure 2.

Figure 2. Balanced dataset after applying SMOTE. From the left: model 1—PFS 12 months, model
2—PFS 18 months, model 3—PFS.

2.6. Feature Selection

The results of the FS process are shown in Table 2. A cutoff threshold of three was
adopted: only the features with a score greater or equal to 3 were included in the final set.
The features and their respective score are reported.

Table 2. Selected features for each model and their scores.

Model 1 Model 2 Model 3

Features Score Features Score Features Score

1 GENDER 6 1 AGE70 6 1 NET 6
2 PinSITE 6 2 NET 6 2 PinSITE 6
3 NMETA 6 3 PinSITE 6 3 NMETA 6
4 BONEMETA 6 4 Ki67 6 4 SSA 6
5 Ki67 6 5 SSA 6 5 PSITE 5
6 LIVERMETA 4 6 LIVERMETA 4 6 Ki67 5
7 AGE 3 7 AEG3-4 4 7 AGE70 4
8 PSITE 3 8 AGE 3 8 BONEMETA 3
9 STAGE 3 9 NMETA 3

10 GRADE 3
11 AEG3-4 3

2.7. ML Algorithms

The features identified in Table 2 were used to train 10 different ML algorithms for
each model. Table 3 summarizes the performance of ten different ML algorithms. In
addition to the accuracy score, further metrics (precision, recall and F1-score) were reported
for each studied class (progressed and progression-free patients). All algorithms were run
using the 10-fold cross-validation.
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Table 3. Performance of different ML algorithms. Performance of different ML algorithms. For
Model 3 precision, recall and f1-score are calculated using macro.

Algorithm
Accuracy Precision Recall F1-Score

Average (St.Dev.) Average (St.Dev.) Average (St.Dev.) Average (St.Dev.)

Logistic regression

Model 1 79.5% (11.8%) 86.5% (18.3%) 74% (16.5%) 77.9% (12.7%)

Model 2 70.4% (20.1%) 76% (23%) 66.5% (25.3%) 67.7% (21.6%)

Model 3 75.4% (22.8%) 78.7% (18.6%) 75.5% (22.8%) 75.1% (22.7%)

Random Forest

Model 1 84.4% (14%) 88.1% (18.7%) 81.3% (14.8%) 83.7% (14.5%)

Model 2 70.3% (21.1%) 70.3% (22.6%) 66.5% (19.8%) 69.4% (18.3%)

Model 3 73.8% (27.1%) 75% (28%) 75.3% (25%) 75.2% (26.2%)

SVC

Model 1 87.1% (12.3%) 88.6% (17.5%) 88.7% (9.3%) 87.6% (11.2%)

Model 2 74% (17.6%) 74.5% (21.2%) 74% (20%) 73.5% (18.8%)

Model 3 76.2% (25.2%) 77.5% (24.3%) 76.2% (25.2%) 75.3% (26.1%)

Gaussian Naïve Bayes

Model 1 51% (4.6%) 25% (40.3%) 5.7% (8.7%) 9% (13.9%)

Model 2 48.9% (4.2%) 4.3% (12.9%) 7.5% (22.5%) 5.5% (16.4%)

Model 3 55.9% (12.7%) 45% (22%) 55.2% (14.4%) 46% (15.4%)

K-Nearest Neighbors (3)

Model 1 84.3% (14.7%) 87.4% (18.2%) 83.3% (13%) 84.4% (13.5%)

Model 2 71.3% (14.1%) 72.6% (18.6%) 71% (21.1%) 70% (15.7%)

Model 3 65.3% (22.5%) 69.6% (20.1%) 65.5% (22.5%) 64.4% (22%)

Decision Trees

Model 1 84.5% (16.3%) 89% (18.5%) 79.7% (21.3%) 82% (16.5%)

Model 2 69% (18.5%) 66.8% (30.9%) 58% (30.2%) 67.6% (23.7%)

Model 3 73.8% (21.5%) 77.4% (18.6%) 74% (21.9%) 73.5% (21.6%)

Gradient Boosting

Model 1 83.5% (15.6%) 85.5% (20%) 83.3% (18.1%) 83.1% (16.6%)

Model 2 59.9% (23.8%) 61% (31%) 60% (32.3%) 57.4% (29.2%)

Model 3 76.1% (22.4%) 76.1% (24.1%) 76% (22.8%) 75.2% (23.7%)

Extra Trees

Model 1 85.2% (10%) 89.5% (16.3%) 85.3% (10.6%) 85.1% (9.2%)

Model 2 65.6% (18.2%) 66.3% (21.3%) 69% (19.1%) 63% (19.8%)

Model 3 72.2% (24.3%) 73.7% (25.8%) 73% (25.2%) 70.5% (26.4%)

MultinomialNB

Model 1 82.2% (12.7%) 86.8% (15.9%) 81.7% (20.2%) 81.2% (13.8%)

Model 2 76.1% (13.1%) 73.6% (14.4%) 78.5% (22.6%) 75% (16.3%)

Model 3 68.3% (14.7%) 71.5% (14.8%) 67.8% (14.5%) 65.9% (14.7%)

MLP

Model 1 86.9% (9.3%) 86.9% (17.1%) 86.7% (8.8%) 85% (12.4%)

Model 2 67.9% (20.4%) 74.5% (21.7%) 66.5% (25.3%) 64.6% (21.7%)

Model 3 76.9% (22.3%) 78% (23.7%) 78.5% (22.6%) 78.2% (22.4%)

2.8. Hyperparameter Tuning

The results in Table 3 corresponded with running algorithms with the default parame-
ter settings. For all of the algorithms that exhibited an accuracy over 70% we performed
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hyperparameter tuning. Those included logistic regression, Multinomial NB, MLP, SVC
and K-Nearest Neighbors classifiers. The range and domain of the tested parameters can
be found in the Appendix A. In addition, ten random seeds were generated and average ac-
curacies were calculated for those five algorithms. A summary of the calculated accuracies
can be found in Table 4. After the hyperparameter tuning, the Multinomial NB algorithm
still exhibited the highest accuracy. It also showed the smallest improvement as the best
parameters were the closest to the default values.

Table 4. The average accuracies of algorithms before and after the hyperparameter tuning.

Algorithm Initial Accuracy (Default
Parameter Setting)

Accuracy after
Hyperparameters Tuning

(Average and Std)

Logistic regression
Model 1 79.5% 83.6% (1.08%)
Model 2 70.4% 72% (0.9%)
Model 3 75.4% 76.3% (0.3%)

MultinomialNB
Model 1 82.2% 82.5% (0.8%)
Model 2 76.1% 77.3% (0.7%)
Model 3 68.3% 70% (0.5%)

MLP
Model 1 86.9% 86.7% (0.7%)
Model 2 67.9% 71.7% (1.03%)
Model 3 76.9% 77.7% (0.6%)

SVC
Model 1 87.1% 86.2% (0.5%)
Model 2 74% 73.6% (1.33%)
Model 3 76.2% 77.4% (0.8%)

KNNeighbors
Model 1 84.3% 85.2% (0.7%)
Model 2 71.3% 72.9% (1.15%)
Model 3 65.3% 77.3% (0.96%)

To examine the statistical significance in the performance differences between the
three models, an ANOVA statistical test was used; a statistical t-test was also used to
establish significance in the performance differences for pairs of models. Model 1 exhibited
the greatest accuracy (p < 0.01) while Model 2 was the least accurate (p < 0.01). This
performance was repeated for all five algorithms used in this section. The statistical tests
were run both on accuracies of all single algorithms and on aggregated runs of all five
algorithms, confirming the statistically significant superiority of Model 1 (p < 0.01).

3. Discussion

In order to identify clinical factors that may predict outcomes in patients who received
SSAs as a first-line treatment for a GEP NET, we used ML algorithms and developed three
models with two or three possible outcomes. The classification algorithm that performed
the best was Multinomial Naïve Bayes, which in general performs well for classifications
with discrete features. Overall, the factors that mainly influenced PFS included age, the
presence of liver or nodal metastases, the primary site, the tumor grade and Ki67. These
results were consistent with previous studies although this field is still little explored.
Collecting data from 535 patients, of whom 438 were from the R-GETNE training cohort
and 97 from The Christie NHS Foundation Trust of Manchester (external validation subset),
Carmona-Bayonas et al. developed an accelerated failure time model to predict PFS in
patients who received a first-line SSA for an advanced, well-differentiated NET. Overall,
PFS was 28.7 months and overall survival (OS) was 85.9 months. The study identified nine
factors associated with PFS: primary tumor location, Ki67, neutrophil-to-lymphocyte ratio,
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alkaline phosphatase, the extent of liver involvement, bone and peritoneal metastases, the
deterioration of the performance status during treatment and symptoms at the baseline15.
In another retrospective cohort of patients treated with octreotide LAR for advanced NETs,
Laskaratos et al. identified the pancreatic primary tumor location, liver metastases and
intermediate grade tumors as predictors of a poor TTP. In contrast, age, extra-hepatic
metastases, mesenteric desmoplasia, previous resection and functionally active disease
were not associated with the treatment response. Additionally, the subgroup analysis
from the CLARINET trial showed no difference in the therapeutic effects of lanreotide
on PFS according to age (≤65 years vs. >65 years) while sex, age, ethnicity, geographical
region, time since diagnosis, Ki67 percentage, tumor grade, chromogranin A level, prior
chemotherapy and prior surgery were not associated with PFS.

If confirmed in future studies, the current findings provide a rationale for differentiat-
ing patients for whom an SSA single agent may not be sufficient to achieve a long-lasting
PFS. Nuclear medicine and molecular imaging features may be incorporated into these
algorithms as separate prognostic markers to help distinguish the prognosis.

Starting with the initial dataset, we firstly needed to formulate a classification that
could be achieved with all of the constraints that were embedded in it. Given its size and
the number of samples containing all of the different outcomes, an ML classifier could be
built to answer the following question: “Is the patient going to progress within 18 months?”

The classification of an unknown sample with such a classifier was either “progressed”
or “progression-free”. We engineered one feature from our dataset (age in years) that
turned out to be the feature of highest importance.

We applied ten different ML algorithms (described in Section 4.4). The performance of
these algorithms with their default parameters is summarized in Table 3. We reported four
different metrics for each algorithm (accuracy, precision, recall and F1-score). Furthermore,
we applied hyperparameter tuning on the five best performing algorithms from Table 3 and
those results are summarized in Table 4. The multi-layer perceptron (MLP) and support
vector machine classifiers (SVC) had the highest performance for Model 1 (about 87%
accuracy). For Model 2 the highest accuracy was considerably slower (77%) and was
reached by the Multinomial Naïve Bayes algorithm. Model 3 achieved a similar maximum
accuracy (of about 77%) but this time the K-Nearest Neighbors algorithm was the most
accurate.

In the end, the aim of our study was to identify potential predictive markers in NET
patients. The number of markers in our dataset (also known as features in ML) was much
smaller than the number of patients. Therefore, from the ML perspective we did not expect
to identify too many of them as redundant. Table 2 summarizes the features that were
selected for the three studied models. In the end, the feature that was marked as redundant
in all three models was the metastatic site (lung). Two models indicated the exclusion
of the following features: metastatic site(bone), grade and type of SSA. This is not to say
that these features were irrelevant for the studied prediction but possibly the inclusion of
features that were included in the model already made the contribution of the excluded
features redundant.

It would be important to further validate this approach by applying it to another
similar dataset but at this point and to the best of our knowledge no such dataset is
available. To mitigate this, the model was cross-validated with ten randomly chosen seeds
during the hyperparameter estimation. The results of these runs can be found in the
Appendix A.

4. Materials and Methods
4.1. Patient Population and Methods

A total of 74 adult patients diagnosed with GEP NET and treated with an SSA (oc-
treotide LAR and lanreotide depot) as a first-line therapy at the Clinical Oncology Unit,
AOU Careggi-Firenze and at the European Institute of Oncology, IEO, Milano (Italy) were
included in this retrospective analysis. The selection criteria were an histologically con-
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firmed NET diagnosis from a gastrointestinal or pancreatic origin, advanced disease not
suitable for radical surgery or residual disease after surgery treated with an SSA (octreotide
LAR 30 mg q28 or lanreotide 120 mg q28) as a first-line therapy. The tumors were classified
according to the World Health Organization (WHO) classification and the novel TNM
classification/G grading system. The Ki67 proliferative index was expressed as a percent-
age based on the count of Ki67-positive cells in 2000 tumor cells in areas of the highest
immunostaining using the MIB1 antibody. All of the patients had computed tomography
(CT) scans and somatostatin receptor scintigraphy (SRS) at the time of the initial evaluation
and the assessment of the therapeutic outcome was usually repeated every six months
unless clinical conditions required shorter intervals. The main endpoint was PFS, defined
as the interval between the diagnosis and the time of the first progressive disease (PD) or
patient death if it occurred before the documented PD.

4.2. Pre-Processing and Oversampling

All data were prospectively collected at the center where the patients had been treated.
A unique computerized datasheet was created and all of the data regarding demographic,
clinic and pathologic features were retrospectively analyzed.

The continuous variables were transformed into binary variables choosing proper
cutoffs and normalization was applied. The dataset imbalance also needed to be analyzed
and fixed with appropriate methods. Indeed, when working with an imbalanced dataset,
classifiers are biased towards the majority class and tend to highly misclassify the minority
class instances. This effect is particularly critical in small datasets [43]. A broadly used
rebalancing method is the synthetic minority oversampling technique (SMOTE) introduced
in 2002 by Chawla et al. [44]. SMOTE performs oversampling of the minority class by
creating synthetic examples based on the nearest neighbors of each example of the minority
class. The process for the creation of synthetic examples is as follows:

1. Each example of the minority class is considered and the K-Nearest Neighbors be-
longing to the same class are identified.

2. A line between the considered example and its K-Nearest Neighbor is drawn;
3. Synthetic examples are randomly generated along those line segments.
4. SMOTE works also for multi-class classification problems [45].

4.3. Feature Selection

Feature Selection (FS) is a technique for dimensionality reduction consisting of the
selection of a subset of features from the higher dimensional set of initial features. The
dimensionality reduction of a dataset can be achieved also through other techniques such
as feature extraction and transformation. However, only FS allows for the interpretability
of the reduced set of features because it maintains the physical meaning of the initial
set of features and this is a particularly crucial point in medical applications [46]. Three
categories of FS techniques can be identified: filter, wrapper and embedded methods. Filter
methods are based on statistical and mathematical tests and are independent from the
classifier (e.g., a chi-squared test, ANOVA). Wrapper methods select the most relevant
features by testing different subsets in a classification task and then selecting the subset
giving the best performance with the tested classifier (e.g., forward selection, backward
selection, recursive feature elimination (RFE)). Finally, embedded methods are algorithms
that incorporate the FS phase into their learning process (e.g., Lasso regularization [47]).
Wrapper methods have the highest computational cost and filter methods have the lowest
one. From the analysis of the most recent literature, a new approach for feature selection
has been proposed by Gupta et al. [48].

In this work, six different FS methods were applied and a scoring system was de-
veloped to select the most relevant features in each of the three proposed classification
models. The F-score, mutual information (MI), RFE with a support vector machine (SVM),
RFE with logistic regression (LR), RFE with a random forest (RF) and Lasso regulariza-
tion were used. After performing FS, a score was assigned to each feature based on the



Diagnostics 2021, 11, 804 10 of 17

number of times it was selected by the six FS techniques in a way similar to the one used
by Amin et al. [49]. The final subset of features was obtained by choosing a threshold
value for the score. Only the features with a score higher than the threshold were selected
and used for the classification task. FS was performed for each one of the three proposed
classification models.

4.4. ML Algorithms

Many different algorithms can be used alone or in combination to perform automated
data analyses. In this section are briefly described the ones that were tested on our dataset
seeking the best performances.

• Logistic Regression (LR): this algorithm falls in the family of statistical models. They
are diffusely used in ML to predict the risk of developing a certain disease. Although
this method models the probability of an output given an input and therefore should
not be properly considered as a classifier, it can still be profitably used as such by
setting cutoff thresholds [50].

• Decision Tree (DT): this is a structure similar to a flowchart where each internal node
holds a test linked through arches (outcome of tests) to other nodes. The children
nodes, or “leaves”, represent decisions or classes. DTs are often used in ensemble
methods [51], techniques that combine multiple models or algorithms to achieve better
predictive performances. A recent evolution is represented in the C5.0 algorithm,
which includes feature selection and reduced pruning errors [52,53].

• Random Forest (RF): introduced by Breiman in 2001 [54], it is an ensemble method
widely used also in the field of bioinformatics, metagenomics and genomic data
analysis [55]. It is a combination of several algorithms for classification or regression,
providing enhanced performances and gaining the predictive power of a single DT [56].
The final prediction is obtained as the average or the majority of the estimations from
the single DTs. RF shows sound performances and simplified parameter tuning [57].

• Support Vector Machine (SVM): SVMs are often the chosen algorithm thanks to their
excellent performance as supervised binary classifiers. They were first introduced by
Boser et al. [58]. The binary classes of training data are represented by two subsets
(’regions’) of features. This is done by using a linear hyperplane of equation [59]:

wtx + b = 0. (1)

The parameters in the above Equation (1) come from a training process aimed at
optimizing the geometric margin between classes. A “linear SVM” makes use of an
elementary hyperplane.

• Naïve Bayes (NB): grounded on the well-known Bayes’ theorem, these probabilistic
classifiers have been used in ML since the very beginning and are still often used in
clinical decision support systems for their neatness.

• Multinomial Naïve Bayes (MNB): an NB variation with the features representing
the frequencies with which a few events have been generated by a multinomial
distribution.

• K-Nearest Neighbors (k-NN): an object is ranked by the majority of its neighbors’
votes. K is a small positive integer. If K = 1 then the object is assigned to its neighbor’s
class. Typically, for binary classifications, K is not even to avoid finding situations
of equality. This method can also be used for regression techniques by assigning to
the object the average of the values of the K closest objects. A drawback is due to
the predominance of the classes with more objects. This can be compensated with
weighing techniques based on distance.

• Gradient Boosting (GB): this produces a predictive model in the form of a set of weak
predictive models, typically DTs. It constructs a model similar to boosting methods
and generalizes them allowing the optimization of an arbitrary differentiable loss
function. Boosting algorithms are views as iterative descending functional gradient
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algorithms, optimizing a cost function over a space function pointing to a direction
with a negative gradient.

• Extremely Randomized Tree Classifier: based on the idea that randomized DTs show a
performance as good as classical ones. In the extreme case, fully randomized trees are
built whose structures are independent of the output values of the learning sample [60].
This approach provides good accuracy and computational efficiency.

• Multi-Layer Perceptron (MLP): this is an artificial neural network model, mapping
sets of input data into a set of appropriate output data. A direct graph is made up
of multiple layers of nodes, each fully connected to the next. The nodes or ’neurons’
are provided with a non-linear activation function. If compared with a traditional
standard perceptron, MLPs can distinguish data that are not linearly separable [61].

We decided to run all of the algorithms with their default parameter settings first. For
the algorithms that exhibited the highest accuracy in this first phase, the hypertuning of
parameters was performed.

4.5. ML Performance Measures

The metrics used to assess the performance of the ML algorithms are introduced in
the following section. They are accuracy, precision, recall and F1-score [62].

• Accuracy: this is a widely used method for assessing how effective one classifier is in
predicting the correct classes. It is defined as the sum of all of the true positives (TPs)
and true negatives (TNs) divided by all samples, TP + TN + false positives (FPs) +
false negatives (FNs).

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

• Precision: in a classification task, the precision is, for a class, defined as TP divided by
the total number of elements labeled as positives (i.e., TP + FP). In a binary classifier,
this parameter can be also called sensitivity.

Precision =
TP

TP + FP
(3)

• Recall: this is defined as the number of TPs divided by the total amount of “real”
positives that includes the TP and the FN.

Recall =
TP

TP + FN
(4)

• F1-score: this is a score computed as the harmonic mean of precision and recall. Its
best value is 1, meaning perfect precision and recall.

F1-score =
TP

TP + 1
2 (FP + FN)

(5)

4.6. ML Validation

There are a few major ways that we could validate the ML models. The simplest way
was to hold out a portion of the data, develop the ML model on the rest of the data and
validate the model with the held out data. This approach can be very dependent on the data
selected for the validation and the performance of the model and thus may vary greatly.
The literature [63] is unanimously in agreement in preferring improved validation, called
cross-validation. During the cross-validation, the model is tested repeatedly to ensure there
is no overfitting (a risk that the algorithm learns to classify only that particular dataset
with a reduced ability to generalize). In our paper we used a 10-fold cross-validation. This
meant that samples were divided into ten subgroups (stratified per class). Ten different
models were then developed and in each model one subclass was used for the validation
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while the remaining samples were the training data. The performance scores reported were
the average scores over all of the ten models.

4.7. Hyperparameter Tuning

Hyperparameter tuning was performed utilizing the GridSearchCV function from
Python’s sklearn package. To ensure cross-validation, a repeated stratified k-fold with
10 folds was used. The whole process was repeated with 10 different random seeds.
Table A3 summarizes all of the parameters and their respective values that were used
during this process.

4.8. Workflow

Figure 3 is a flowchart that explains the workflow adopted in this study. In the initial
study, 74 patients were enrolled and, after data cleaning, 70 were included in the final
dataset for classification. Pre-processing was applied consisting of normalization, binariza-
tion of Boolean features and an imbalance analysis. Oversampling was then introduced to
fix the imbalance and FS was performed. The oversampled data and the selected features
were used as input data for the classifiers; their performance was compared and the best
performing algorithms were further optimized. The final performance was the highest
possible.

Figure 3. Flowchart of the workflow followed in this study.

The described workflow was used for each of the three models. The third model,
having three classes as the possible outcome, was a multi-class problem. In this case, a
“one-vs.-all” strategy was adopted both for FS and classification.

5. Conclusions

Summarizing, we have documented for the first time that the ML techniques provided
a predictive model, which could potentially be used to differentiate prognostic groups
in patients with an advanced NET and treated with an SSA. Consistent with previous
literature, the predictive factors identified in our study may be useful when stratifying
patients with a NET in further studies.

In detail, we studied if we could develop a reliable ML classifier that could predict
(based on the value of other markers) if a patient would progress or not within 12 or
18 months. We developed three such models (that achieve accuracy between 77–87%).
Furthermore, we identified the set of markers that were redundant in our analysis meaning
these markers were not necessary to be considered in order to achieve the maximum
classifier accuracy. We declare that the excluded markers were not necessarily unimportant
for the prediction of progression but the included markers might have already captured
their influence.

The accuracy of the classifier could be further improved by adding information about
a greater number of patients to the dataset. Adding new markers or improving the accuracy
of measuring the used markers could also bring an additional insight into the two studied
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groups of patients and raise the accuracy of the classifier. Finally, our study suggested that
ML was a promising model to address the value of clinical or biological factors in terms of
the prediction of the response/efficacy to antitumor treatments in GEP NETs.

In conclusion, what we discovered in this research confirmed that of previous studies
about GEP NETs markers. The amount of work needed to establish those markers is far
greater when non-computational methods are used. By using the computational methods,
we were able in just one study to evaluate the influence of multiple markers. This approach
is very useful not only for the validation of the previous findings but also as a tool that can
help prioritize the studies of the individual markers.

Finally, we focused our efforts on the treatment because currently there are no predic-
tive biomarkers of SSA efficacy in patients with NETs. We have documented, for the first
time, that the factors that mainly influenced progression-free survival (PFS) included age,
the number of metastatic sites and the primary site. Those three features were identified
by all three studied models. In addition, two models indicated the following features as
important: adverse events G3-G4, sex, Ki67, metastatic site (liver), functioning NET, the
primary site and the stage.

These innovative results open a new perspective and confirm that studies focusing
on these factors but including more patients and from different countries (international
studies) would be important for future studies as NETs rarely result in malignancies.
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Appendix A. Tables

Table A1. Dataset.

Patients Number 74 100%

Age (years)

Median 68
Range 24–90

>70 57 77%
≥70 17 23%

Sex

M 45 61%
F 29 39%
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Table A1. Cont.

Patients Number 74 100%

Performance status (ECOG)

0–1 73 99%
2 1 1%

Primary site

Pancreas 30 41%
Gastrointestinal 44 59%

Functioning NET

Yes 22 30%
No 52 70%

Grade

G1 26 35%
G2 46 62%
NA 2 3%

Ki67

<2% 19 26%
2–20% 51 69%
≥20% 2 2.5%

NA 2 2.5%

Stage

Locally advanced 2 3%
Metastatic 72 97%

Primary on site

Yes 31 42%
No 43 58%

Number of metastatic sites

0 2 3%
1 46 62%

>1 26 35%

Metastatic sites

Liver 63 85%
Lung 5 7%
Bone 3 4%

Type of SSA

Lanreotide 34 46%
Octreotide LAR 40 54%

Adverse events G3-G4

Yes 1 1%
No 73 99%

PFS > 12 months

Yes 53 72%
No 17 23%
NA 4 5%

PFS > 18 months

Yes 43 58%
No 27 37%
NA 4 5%
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Table A2. The original count of samples for each studied model.

Model 12 Month
Progression

18 Month
Progression No Progression

1 17 NA 53

2 NA 27 43

3 17 10 43

Table A3. The parameters and their values used in the hyperparameter tuning process.

Algorithm Parameter Parameter Values

Logistic regression

solvers ‘newton-cg’, ‘lbfgs’, ‘liblinear’

penalty I2

c_values 100, 10, 1.0, 0.1, 0.01

Multinomial NB

alpha 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.1, 0.01,
0.001, 0.0001, 0.00001

fit_prior True, False

class_prior
None, (0.5, 0.5), (0.4, 0.6), (0.45,
0.55), (0.6, 0.4), (0.1, 0.9), (0.2,

0.8)

MLP

hidden_layer_sizes (50, 50, 50), (50, 100, 50), (100)

activation ‘tanh’, ‘relu’

solver ‘sgd’, ‘adam’

alpha 0.0001, 0.05

learning_date ‘constant’, ‘adaptive’

SVC

C 0.1, 1, 10, 100, 1000

gamma 1, 0.1, 0.01, 0.001, 0.0001

kernel rbf

K-Nearest Neighbors

n_neighbors 3, 5, 11, 19

weights uniform, distance

metric ‘euclidean’, ‘manhattan’
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